ÁñÁ«ÊÓƵ

Object moved to here.

Building CRISPR Gene Therapies for the Central Nervous System: A Review | Genetics and Genomics | ÁñÁ«ÊÓƵ Neurology | ÁñÁ«ÊÓƵ Network

ÁñÁ«ÊÓƵ

[Skip to Navigation]
Sign In
1.
Barrangou ÌýR, Fremaux ÌýC, Deveau ÌýH, Ìýet al. ÌýCRISPR provides acquired resistance against viruses in prokaryotes.Ìý Ìý³§³¦¾±±ð²Ô³¦±ð. 2007;315(5819):1709-1712. doi:
2.
Jinek ÌýM, Chylinski ÌýK, Fonfara ÌýI, Hauer ÌýM, Doudna ÌýJA, Charpentier ÌýE. ÌýA programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity.Ìý Ìý³§³¦¾±±ð²Ô³¦±ð. 2012;337(6096):816-821. doi:
3.
Reardon ÌýS. First CRISPR clinical trial gets green light from US panel. Ìý±·²¹³Ù³Ü°ù±ð. Published online June 22, 2016. doi:
4.
Cyranoski ÌýD. ÌýChinese scientists to pioneer first human CRISPR trial.Ìý Ìý±·²¹³Ù³Ü°ù±ð. 2016;535(7613):476-477. doi:
5.
Gillmore ÌýJD, Gane ÌýE, Taubel ÌýJ, Ìýet al. ÌýCRISPR-Cas9 in vivo gene editing for transthyretin amyloidosis.Ìý ÌýN Engl J Med. 2021;385(6):493-502. doi:
6.
Frangoul ÌýH, Altshuler ÌýD, Cappellini ÌýMD, Ìýet al. ÌýCRISPR-Cas9 gene editing for sickle cell disease and β-thalassemia.Ìý ÌýN Engl J Med. 2021;384(3):252-260. doi:
7.
Li ÌýH, Yang ÌýY, Hong ÌýW, Huang ÌýM, Wu ÌýM, Zhao ÌýX. ÌýApplications of genome editing technology in the targeted therapy of human diseases: mechanisms, advances and prospects.Ìý ÌýSignal Transduct Target Ther. 2020;5(1):1. doi:
8.
Mercuri ÌýE, Darras ÌýBT, Chiriboga ÌýCA, Ìýet al; CHERISH Study Group. ÌýNusinersen versus sham control in later-onset spinal muscular atrophy.Ìý ÌýN Engl J Med. 2018;378(7):625-635. doi:
9.
Miller ÌýTM, Cudkowicz ÌýME, Genge ÌýA, Ìýet al; VALOR and OLE Working Group. ÌýTrial of antisense oligonucleotide tofersen for SOD1 ´¡³¢³§.Ìý ÌýN Engl J Med. 2022;387(12):1099-1110. doi:
10.
Yeh ÌýCD, Richardson ÌýCD, Corn ÌýJE. ÌýAdvances in genome editing through control of DNA repair pathways.Ìý ÌýNat Cell Biol. 2019;21(12):1468-1478. doi:
11.
Cullot ÌýG, Boutin ÌýJ, Toutain ÌýJ, Ìýet al. ÌýCRISPR-Cas9 genome editing induces megabase-scale chromosomal truncations.Ìý ÌýNat Commun. 2019;10(1):1136. doi:
12.
Park ÌýSH, Cao ÌýM, Pan ÌýY, Ìýet al. ÌýComprehensive analysis and accurate quantification of unintended large gene modifications induced by CRISPR-Cas9 gene editing.Ìý ÌýSci Adv. 2022;8(42):eabo7676. doi:
13.
Papathanasiou ÌýS, Markoulaki ÌýS, Blaine ÌýLJ, Ìýet al. ÌýWhole chromosome loss and genomic instability in mouse embryos after CRISPR-Cas9 genome editing.Ìý ÌýNat Commun. 2021;12(1):5855. doi:
14.
Chapman ÌýJR, Taylor ÌýMRG, Boulton ÌýSJ. ÌýPlaying the end game: DNA double-strand break repair pathway choice.Ìý ÌýMol Cell. 2012;47(4):497-510. doi:
15.
Nishiyama ÌýJ, Mikuni ÌýT, Yasuda ÌýR. ÌýVirus-mediated genome editing via homology-directed repair in mitotic and postmitotic cells in mammalian brain.Ìý Ìý±·±ð³Ü°ù´Ç²Ô. 2017;96(4):755-768.e5. doi:
16.
Anzalone ÌýAV, Randolph ÌýPB, Davis ÌýJR, Ìýet al. ÌýSearch-and-replace genome editing without double-strand breaks or donor DNA.Ìý Ìý±·²¹³Ù³Ü°ù±ð. 2019;576(7785):149-157. doi:
17.
Yarnall ÌýMTN, Ioannidi ÌýEI, Schmitt-Ulms ÌýC, Ìýet al. ÌýDrag-and-drop genome insertion of large sequences without double-strand DNA cleavage using CRISPR-directed integrases.Ìý ÌýNat Biotechnol. 2023;41(4):500-512. doi:
18.
Komor ÌýAC, Kim ÌýYB, Packer ÌýMS, Zuris ÌýJA, Liu ÌýDR. ÌýProgrammable editing of a target base in genomic DNA without double-stranded DNA cleavage.Ìý Ìý±·²¹³Ù³Ü°ù±ð. 2016;533(7603):420-424. doi:
19.
Anzalone ÌýAV, Gao ÌýXD, Podracky ÌýCJ, Ìýet al. ÌýProgrammable deletion, replacement, integration and inversion of large DNA sequences with twin prime editing.Ìý ÌýNat Biotechnol. 2022;40(5):731-740. doi:
20.
Zuo ÌýE, Sun ÌýY, Wei ÌýW, Ìýet al. ÌýCytosine base editor generates substantial off-target single-nucleotide variants in mouse embryos.Ìý Ìý³§³¦¾±±ð²Ô³¦±ð. 2019;364(6437):289-292. doi:
21.
Jin ÌýS, Zong ÌýY, Gao ÌýQ, Ìýet al. ÌýCytosine, but not adenine, base editors induce genome-wide off-target mutations in rice.Ìý Ìý³§³¦¾±±ð²Ô³¦±ð. 2019;364(6437):292-295. doi:
22.
Fiumara ÌýM, Ferrari ÌýS, Omer-Javed ÌýA, Ìýet al. Genotoxic effects of base and prime editing in human hematopoietic stem cells. ÌýNat Biotechnol. Published online September 7, 2023. doi:
23.
Lee ÌýJ, Lim ÌýK, Kim ÌýA, Ìýet al. ÌýPrime editing with genuine Cas9 nickases minimizes unwanted indels.Ìý ÌýNat Commun. 2023;14(1):1786. doi:
24.
Zhao ÌýZ, Shang ÌýP, Mohanraju ÌýP, Geijsen ÌýN. ÌýPrime editing: advances and therapeutic applications.Ìý ÌýTrends Biotechnol. 2023;41(8):1000-1012. doi:
25.
Maeder ÌýML, Linder ÌýSJ, Cascio ÌýVM, Fu ÌýY, Ho ÌýQH, Joung ÌýJK. ÌýCRISPR RNA-guided activation of endogenous human genes.Ìý ÌýNat Methods. 2013;10(10):977-979. doi:
26.
Gilbert ÌýLA, Horlbeck ÌýMA, Adamson ÌýB, Ìýet al. ÌýGenome-scale CRISPR-mediated control of gene repression and activation.Ìý Ìý°ä±ð±ô±ô. 2014;159(3):647-661. doi:
27.
Pasricha ÌýSR, Drakesmith ÌýH. ÌýHemoglobinopathies in the fetal position.Ìý ÌýN Engl J Med. 2018;379(17):1675-1677. doi:
28.
Sadekar ÌýSS, Bowen ÌýM, Cai ÌýH, Ìýet al. ÌýTranslational approaches for brain delivery of biologics via cerebrospinal fluid.Ìý ÌýClin Pharmacol Ther. 2022;111(4):826-834. doi:
29.
Chen ÌýX, Lim ÌýDA, Lawlor ÌýMW, Ìýet al. ÌýBiodistribution of adeno-associated virus gene therapy following cerebrospinal fluid-directed administration.Ìý ÌýHum Gene Ther. 2023;34(3-4):94-111. doi:
30.
Pardridge ÌýWM. ÌýBlood-brain barrier and delivery of protein and gene therapeutics to brain.Ìý ÌýFront Aging Neurosci. 2020;11:373. doi:
31.
Hanada ÌýS, Fujioka ÌýK, Inoue ÌýY, Kanaya ÌýF, Manome ÌýY, Yamamoto ÌýK. Ìý°ä±ð±ô±ô-based in vitro blood-brain barrier model can rapidly evaluate nanoparticles’ brain permeability in association with particle size and surface modification.Ìý ÌýInt J Mol Sci. 2014;15(2):1812-1825. doi:
32.
Betzer ÌýO, Shilo ÌýM, Opochinsky ÌýR, Ìýet al. ÌýThe effect of nanoparticle size on the ability to cross the blood-brain barrier: an in vivo study.Ìý ÌýNanomedicine (Lond). 2017;12(13):1533-1546. doi:
33.
Shilo ÌýM, Sharon ÌýA, Baranes ÌýK, Motiei ÌýM, Lellouche ÌýJPM, Popovtzer ÌýR. ÌýThe effect of nanoparticle size on the probability to cross the blood-brain barrier: an in-vitro endothelial cell model.Ìý ÌýJ Nanobiotechnology. 2015;13(1):19. doi:
34.
Zhang ÌýYN, Poon ÌýW, Tavares ÌýAJ, McGilvray ÌýID, Chan ÌýWCW. ÌýNanoparticle-liver interactions: cellular uptake and hepatobiliary elimination.Ìý ÌýJ Control Release. 2016;240:332-348. doi:
35.
Hou ÌýX, Zaks ÌýT, Langer ÌýR, Dong ÌýY. ÌýLipid nanoparticles for mRNA delivery.Ìý ÌýNat Rev Mater. 2021;6(12):1078-1094. doi:
36.
Polack ÌýFP, Thomas ÌýSJ, Kitchin ÌýN, Ìýet al; C4591001 Clinical Trial Group. ÌýSafety and efficacy of the BNT162b2 mRNA Covid-19 vaccine.Ìý ÌýN Engl J Med. 2020;383(27):2603-2615. doi:
37.
Baden ÌýLR, El Sahly ÌýHM, Essink ÌýB, Ìýet al; COVE Study Group. ÌýEfficacy and safety of the mRNA-1273 SARS-CoV-2 vaccine.Ìý ÌýN Engl J Med. 2021;384(5):403-416. doi:
38.
Swingle ÌýKL, Hamilton ÌýAG, Mitchell ÌýMJ. ÌýLipid nanoparticle-mediated delivery of mRNA therapeutics and vaccines.Ìý ÌýTrends Mol Med. 2021;27(6):616-617. doi:
39.
Wang ÌýY, Wang ÌýX, Xie ÌýR, Burger ÌýJC, Tong ÌýY, Gong ÌýS. ÌýOvercoming the blood-brain barrier for gene therapy via systemic administration of GSH-responsive silica nanocapsules.Ìý ÌýAdv Mater. 2023;35(6):e2208018. doi:
40.
Zou ÌýY, Sun ÌýX, Yang ÌýQ, Ìýet al. ÌýBlood-brain barrier-penetrating single CRISPR-Cas9 nanocapsules for effective and safe glioblastoma gene therapy.Ìý ÌýSci Adv. 2022;8(16):eabm8011. doi:
41.
Shen ÌýW, Liu ÌýS, Ou ÌýL. ÌýrAAV immunogenicity, toxicity, and durability in 255 clinical trials: a meta-analysis.Ìý ÌýFront Immunol. 2022;13:1001263. doi:
42.
Lek ÌýA, Wong ÌýB, Keeler ÌýA, Ìýet al. ÌýUnexpected death of a Duchenne muscular dystrophy patient in an N-of-1 trial of rAAV9-1 delivered CRISPR-transactivator.Ìý Ìý³¾±ð»å¸é³æ¾±±¹. Preprint posted online May 18, 2023. doi:
43.
Somanathan ÌýS, Calcedo ÌýR, Wilson ÌýJM. ÌýAdenovirus-antibody complexes contributed to lethal systemic inflammation in a gene therapy trial.Ìý ÌýMol Ther. 2020;28(3):784-793. doi:
44.
Wilson ÌýJM, Flotte ÌýTR. ÌýMoving forward after two deaths in a gene therapy trial of myotubular myopathy.Ìý ÌýHum Gene Ther. 2020;31(13-14):695-696. doi:
45.
Hanlon ÌýKS, Kleinstiver ÌýBP, Garcia ÌýSP, Ìýet al. ÌýHigh levels of AAV vector integration into CRISPR-induced DNA breaks.Ìý ÌýNat Commun. 2019;10(1):4439. doi:
46.
Li ÌýA, Lee ÌýCM, Hurley ÌýAE, Ìýet al. ÌýA self-deleting AAV-CRISPR system for in vivo genome editing.Ìý ÌýMol Ther Methods Clin Dev. 2018;12:111-122. doi:
47.
Kim ÌýDY, Lee ÌýJM, Moon ÌýSB, Ìýet al. ÌýEfficient CRISPR editing with a hypercompact Cas12f1 and engineered guide RNAs delivered by adeno-associated virus.Ìý ÌýNat Biotechnol. 2022;40(1):94-102. doi:
48.
Penaud-Budloo ÌýM, Le Guiner ÌýC, Nowrouzi ÌýA, Ìýet al. ÌýAdeno-associated virus vector genomes persist as episomal chromatin in primate muscle.Ìý ÌýJ Virol. 2008;82(16):7875-7885. doi:
49.
Miao ÌýCH, Snyder ÌýRO, Schowalter ÌýDB, Ìýet al. ÌýThe kinetics of rAAV integration in the liver.Ìý ÌýNat Genet. 1998;19(1):13-15. doi:
50.
Marcó ÌýS, Haurigot ÌýV, Jaén ÌýML, Ìýet al. ÌýSeven-year follow-up of durability and safety of AAV CNS gene therapy for a lysosomal storage disorder in a large animal.Ìý ÌýMol Ther Methods Clin Dev. 2021;23:370-389. doi:
51.
Mehta ÌýA, Merkel ÌýOM. ÌýImmunogenicity of Cas9 protein.Ìý ÌýJ Pharm Sci. 2020;109(1):62-67. doi:
52.
Li ÌýA, Tanner ÌýMR, Lee ÌýCM, Ìýet al. ÌýAAV-CRISPR gene editing is negated by pre-existing immunity to Cas9.Ìý ÌýMol Ther. 2020;28(6):1432-1441. doi:
53.
Finn ÌýJD, Smith ÌýAR, Patel ÌýMC, Ìýet al. ÌýA single administration of CRISPR/Cas9 lipid nanoparticles achieves robust and persistent in vivo genome editing.Ìý Ìý°ä±ð±ô±ô Rep. 2018;22(9):2227-2235. doi:
54.
Intellia Therapeutics announces new positive clinical data from phase 1 study of NTLA-2002, an investigational in vivo CRISPR genome editing treatment for hereditary angioedema (HAE). News release. Intellia Therapeutics. June 11, 2023. Accessed July 20, 2023.
55.
Haapaniemi ÌýE, Botla ÌýS, Persson ÌýJ, Schmierer ÌýB, Taipale ÌýJ. ÌýCRISPR-Cas9 genome editing induces a p53-mediated DNA damage response.Ìý ÌýNat Med. 2018;24(7):927-930. doi:
56.
Haeussler ÌýM, Schönig ÌýK, Eckert ÌýH, Ìýet al. ÌýEvaluation of off-target and on-target scoring algorithms and integration into the guide RNA selection tool CRISPOR.Ìý ÌýGenome Biol. 2016;17(1):148. doi:
57.
Tsai ÌýSQ, Nguyen ÌýNT, Malagon-Lopez ÌýJ, Topkar ÌýVV, Aryee ÌýMJ, Joung ÌýJK. ÌýCIRCLE-seq: a highly sensitive in vitro screen for genome-wide CRISPR-Cas9 nuclease off-targets.Ìý ÌýNat Methods. 2017;14(6):607-614. doi:
58.
Cameron ÌýP, Fuller ÌýCK, Donohoue ÌýPD, Ìýet al. ÌýMapping the genomic landscape of CRISPR-Cas9 cleavage.Ìý ÌýNat Methods. 2017;14(6):600-606. doi:
59.
Tsai ÌýSQ, Zheng ÌýZ, Nguyen ÌýNT, Ìýet al. ÌýGUIDE-seq enables genome-wide profiling of off-target cleavage by CRISPR-Cas nucleases.Ìý ÌýNat Biotechnol. 2015;33(2):187-197. doi:
60.
Lazzarotto ÌýCR, Malinin ÌýNL, Li ÌýY, Ìýet al. ÌýCHANGE-seq reveals genetic and epigenetic effects on CRISPR-Cas9 genome-wide activity.Ìý ÌýNat Biotechnol. 2020;38(11):1317-1327. doi:
61.
Chiesa ÌýR, Georgiadis ÌýC, Syed ÌýF, Ìýet al; Base-Edited CAR T Group. ÌýBase-edited CAR7 T cells for relapsed T-cell acute lymphoblastic leukemia.Ìý ÌýN Engl J Med. 2023;389(10):899-910. doi:
62.
Ottaviano ÌýG, Georgiadis ÌýC, Gkazi ÌýSA, Ìýet al; TT52 CRISPR-CAR group. ÌýPhase 1 clinical trial of CRISPR-engineered CAR19 universal T cells for treatment of children with refractory B cell leukemia.Ìý ÌýSci Transl Med. 2022;14(668):eabq3010. doi:
63.
BEACON: a study evaluating the safety and efficacy of BEAM-101 in patients with severe sickle cell disease (BEACON). ClinicalTrials.gov identifier: NCT05456880. Updated November 8, 2023. Accessed November 17, 2023.
64.
A study of VERVE-101 in patients with familial hypercholesterolemia and cardiovascular disease. ClinicalTrials.gov identifier: NCT05398029. Updated May 16, 2023. Accessed November 17, 2023.
65.
Davis ÌýJR, Banskota ÌýS, Levy ÌýJM, Ìýet al. ÌýEfficient prime editing in mouse brain, liver and heart with dual AAVs.Ìý ÌýNat Biotechnol. Published online May 4, 2023. doi:
66.
Everette ÌýKA, Newby ÌýGA, Levine ÌýRM, Ìýet al. ÌýEx vivo prime editing of patient haematopoietic stem cells rescues sickle-cell disease phenotypes after engraftment in mice.Ìý ÌýNat Biomed Eng. 2023;7(5):616-628. doi:
67.
Jang ÌýH, Jo ÌýDH, Cho ÌýCS, Ìýet al. ÌýApplication of prime editing to the correction of mutations and phenotypes in adult mice with liver and eye diseases.Ìý ÌýNat Biomed Eng. 2022;6(2):181-194. doi:
68.
FDA approves first gene therapies to treat patients with sickle cell disease. News release. US Food and Drug Administration. December 8, 2023. Accessed December 26, 2023.
69.
Intellia presents updated interim data from the cardiomyopathy arm of ongoing phase 1 study of NTLA-2001, an investigational CRISPR therapy for the treatment of transthyretin (ATTR) amyloidosis at the American Heart Association Scientific Sessions 2022. News release. Intellia Therapeutics. November 5, 2022. Accessed July 24, 2023.
70.
Intellia and Regeneron announce updated phase 1 data demonstrating a single dose of NTLA-2001, an investigational CRISPR therapy for transthyretin (ATTR) amyloidosis, resulted in rapid, deep and sustained reduction in disease-causing protein. News release. Intellia Therapeutics. February 28, 2022. Accessed July 24, 2023.
71.
Study of EBT-101 in aviremic HIV-1 infected adults on stable ART. ClinicalTrials.gov identifier: NCT05144386. Updated November 7, 2023. Accessed November 17, 2023.
72.
A study of LBP-EC01 in the treatment of acute uncomplicated UTI caused by multi-drug resistant E. coli (ELIMINATE Trial) (ELIMINATE). ClinicalTrials.gov identifier: NCT05488340. Updated September 26, 2023. Accessed November 17, 2023.
73.
A study investigating the safety, recovery, and pharmacodynamics of multiple oral administrations of SNIPR001 in healthy subjects. ClinicalTrials.gov identifier: NCT05277350. Updated May 17, 2023. Accessed November 17, 2023.
74.
Dorval ÌýA; Verve Therapeutics. Form 8-K. Published December 5, 2022. Accessed July 21, 2023.
75.
Monckton ÌýDG. ÌýManage risk of accidental gene editing of germline.Ìý Ìý±·²¹³Ù³Ü°ù±ð. 2019;568(7753):458-458. doi:
76.
Lander ÌýES, Baylis ÌýF, Zhang ÌýF, Ìýet al. ÌýAdopt a moratorium on heritable genome editing.Ìý Ìý±·²¹³Ù³Ü°ù±ð. 2019;567(7747):165-168. doi:
77.
Cyranoski ÌýD, Ledford ÌýH. ÌýGenome-edited baby claim provokes international outcry.Ìý Ìý±·²¹³Ù³Ü°ù±ð. 2018;563(7733):607-608. doi:
78.
Cyranoski ÌýD. ÌýWhat CRISPR-baby prison sentences mean for research.Ìý Ìý±·²¹³Ù³Ü°ù±ð. 2020;577(7789):154-155. doi:
79.
Kaplanis ÌýJ, Ide ÌýB, Sanghvi ÌýR, Ìýet al; Genomics England Research Consortium. ÌýGenetic and chemotherapeutic influences on germline hypermutation.Ìý Ìý±·²¹³Ù³Ü°ù±ð. 2022;605(7910):503-508. doi:
80.
Adewoye ÌýAB, Lindsay ÌýSJ, Dubrova ÌýYE, Hurles ÌýME. ÌýThe genome-wide effects of ionizing radiation on mutation induction in the mammalian germline.Ìý ÌýNat Commun. 2015;6(1):6684. doi:
81.
Lee ÌýRG, Mazzola ÌýAM, Braun ÌýMC, Ìýet al. ÌýEfficacy and safety of an investigational single-course CRISPR base-editing therapy targeting PCSK9 in nonhuman primate and mouse models.Ìý Ìý°ä¾±°ù³¦³Ü±ô²¹³Ù¾±´Ç²Ô. 2023;147(3):242-253. doi:
82.
Wadman ÌýM. ÌýFDA no longer needs to require animal tests before human drug trials.Ìý Ìý³§³¦¾±±ð²Ô³¦±ð. Published online January 10, 2023. doi:
83.
Chaudhari ÌýHG, Penterman ÌýJ, Whitton ÌýHJ, Ìýet al. ÌýEvaluation of homology-independent CRISPR-Cas9 off-target assessment methods.Ìý ÌýCRISPR J. 2020;3(6):440-453. doi:
Review
January 29, 2024

Building CRISPR Gene Therapies for the Central Nervous System: A Review

Author Affiliations
  • 1Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco
  • 2Department of Neurology, Memory and Aging Center, University of California, San Francisco
ÁñÁ«ÊÓƵ Neurol. 2024;81(3):283-290. doi:10.1001/jamaneurol.2023.4983
Abstract

ImportanceÌý Gene editing using clustered regularly interspaced short palindromic repeats (CRISPR) holds the promise to arrest or cure monogenic disease if it can be determined which genetic change to create without inducing unintended cellular dysfunction and how to deliver this technology to the target organ reliably and safely. Clinical trials for blood and liver disorders, for which delivery of CRISPR is not limiting, show promise, yet no trials have begun for central nervous system (CNS) indications.

ObservationsÌý The CNS is arguably the most challenging target given its innate exclusion of large molecules and its defenses against bacterial invasion (from which CRISPR originates). Herein, the types of CRISPR editing (DNA cutting, base editing, and templated repair) and how these are applied to different genetic variants are summarized. The challenges of delivering genome editors to the CNS, including the viral and nonviral delivery vehicles that may ultimately circumvent these challenges, are discussed. Also, ways to minimize the potential in vivo genotoxic effects of genome editors through delivery vehicle design and preclinical off-target testing are considered. The ethical considerations of germline editing, a potential off-target outcome of any gene editing therapy, are explored. The unique regulatory challenges of a human-specific therapy that cannot be derisked solely in animal models are also discussed.

Conclusions and RelevanceÌý An understanding of both the potential benefits and challenges of CRISPR gene therapy better informs the scientific, clinical, regulatory, and timeline considerations of developing CRISPR gene therapy for neurologic diseases.

×